
6 DOF Nonlinear AUV Simulation Toolbox

Xiaodong Chen, Dave Marco, Sam Smith, Edgar An, K. Ganesan, Tony Healey

Email: xdchen@oe.fau.edu

Abstract:

This paper describes the organization of 6 DOF nonlinear autonomous

underwater vehicle (AUV) simulation toolbox, which is currently under

development for the Ocean Explorer (OEX) series AUVS developed at Florida

Atlantic University. This software development is part of 5-year ONR MURI

effort of which its goal is to develop innovative tools and methodologies for the

control of complex nonlinear dynamic systems. The purpose of this software

simulation is to supply a flexible 3D-simulation platform for motion

visualization, in-lab debugging and testing of mission-specific strategies as well

as those related to C3 purposes. This software is currently jointly developed by

the Ocean Engineering Department at Florida Atlantic University and Naval

Postgraduate School for the FAU OEX and NPS Phoenix AWS.

Introduction

The new generation multipurpose

autonomous underwater vehicles (AW) such as

Ocean Explorer are modular designed [Smith] in

order to cut time and cost for vehicle
recontlguration. A flexible 3D-simulation
platform is desired to visualize testing of AW

components before porting to vehicle meanwhile

platform can also be used for mission replay.

Comparing to the most available simulation

software, advantage for using this software

architecture, which is almost identical to the

OEX software running on real-time operation

system VxWorks, is based on behavioral

decomposition methodology, where each

behavior is implemented as an independent Unix

process. A behavior is viewed as an independent

conceptual task that cooperates with other

behaviors in the system to perform a given

mission. The nearly identical structure gives the

user great flexibility that program tested on the

simulation platform can be directly ported with

few or no modification onto the OEX and this is

expected to reduce the development cycle by
minimizing the difference between the actual

system and simulation environment. Shared

memory is used as the backbone of data
communication among processes instead of

conventional message passing. Access control of

shared memory and data synchronization is

achieved by using semaphores. Simulation

programs are written in C and C++. In particular,

Motif is used to design GUI and Open Inventor is

used to create 3D models. Current implemented

modules include a nonlinear dynamic model for

the OEX, shared memory and semaphore

manager tools, shared memory monitor, data

logger, fuzzy sliding mode pitch controller and

3D graphics interface for displaying real-time or

post-processed data. Additional modules which

include vehicle hydrodynamics model, thruster

model, wave and current models, sensor model,

an annotated map for bottom terrain will also be

implemented within the project duration.

Model of Ocean Explorer

The Ocean Explorer AW (Figure 1) is 7.14

feet long and 21 inches in maximum diameter.

Weight in airis714.21bs and displaced weight is

716.71bs. Hull volume is 11.193 lft3. It is

designed with
● a teardrop shaped fiberglass hull based on a

modified version of the Gertler Series 58

Model 4154-body shape.
● aft-mounted cruciform control surfaces.
● a 3-bladed propeller 18 inches in diameter.

0-7803-4111-2/97 $10.00 (c) 1997 IEEE

intelligent Ni-Cd battery packs. The battery

packs can supply up to 12 hours of

continuous missions at 3-knot cruising

speed.

main computer and electronics board

(MC68030 at 50 MHz on the VME bus).

Each of the components is embedded with a

LonWorks Neuron node, and the control

communication is achieved via LonTalk

protocol.

sensors include Watson AHRS-C302RS (3-

axis acceleration, angles and rates),
SIMRAD mesotech 809 (altitude), Druck

PTX 1649 (water depth) , Sonic Speed

(water speed), DGPS, LBL and USBL

positioning system.

The hydrodynamic and maneuvering models of

OEX have been developed [Humphrey].

Vehicle equations and notation can be referred

from [Fossen], Figure 2 shows an open loop time
history of the heading angle and yaw rate while

rudder angle was set to 0.1 radius. (Assuming a

constant propeller force). More work on

developing a suitable thruster model is needed.

Shared memory and Semaphore

The critical aspect of multiprocessing

programming is the communication among

processes. Shared memory is chosen as the way

of communication because it is fast and effective

[Ganesan]. . Semaphore is used to control the

access of shared memory to avoid the conflict

and for synchronization problem. The normal

procedure for any process to access the shared

memory is to acquire the related semaphore first,

then access the data and then give up the

semaphore. Shared memory is implemented as a

multiple units’ data storage where related

variables are carefully grouped. If the shared

memory is considered as a single unit, most of

processes have to wait for a long time before

they get the semaphore. If each variable is

assigned its own semaphore, synchronization can

not be guaranteed or deadlock may occur. The

number of semaphores within a group is also

limited on Unix. The structure of shared memory

must be very carefully chosen. A simple text file

“shmem.in” with C-like language is used to make

it easy to design or reconstruct the required

shared memory structure such as the variable

name, type, initial value, unit, sampling rate and
etc. A sample from “shmem.in” is listed below:

//Sync

AuviWotion //written by StateMgr

(
head “deg” double = 0,0; 8 IfChanged;

roll “deg” double = 0.0; 8 IfChanged;

pitch “deg” double = 0.0; 8 Ifchanged;

yawRate “deg/s” double = 0.0;;

rollRate “deg/s” double = 0.0;;
pitchRate “deg/s” double = 0.0;;

XAcc “G” double = 0.0;;

yAcc “G “ double = 0.0;;

rlicc !tG !’ double = 0.0;;

}
. .
,}

Here a unit which includes head, roll, pitch etc.

called ‘AuvMotion’ in shared memory is defined

where “head” is a “double” type variable with

initial value 0.0. The unit of head is degree. The

sampling frequency is 8Hz. The logger strategy

is head value will be logged only if it is changed.

Two filter programs are supplied to convert
“shmem.in” to C source code, one for VxWorks

and one for Unix.

All processes can only interact with shared

memory via dedicated function call to prevent

the incorrect operation on shared memory. To

minimize the time for a process of keeping

semaphore, two operations are usually used by

special functions, “SMGlobalToLocal” and
“SMLocalToGlobal”, which are used for process

to read from and write to shared memory. (Figure

3).

A shared memory and semaphore manage

tool is designed for users convenience. Users can

use the tool to create or delete shared memory

and semaphores, can get variable information

such as variable values and relative semaphore

number, can set special semaphore values to

block or release the access to particular part of

shared memory and can reinitialize shared

memory. The Motif version manage tool is also

available.

Arbiter and Manager

The advantage of OEX behavior-based

structure design as compared with hierarchical

architecture is that interaction among processes is

highly modular and thus processes can be added

or removed without much interfering with others,

0-7803-4111-2/97 $10.00 (c) 1997 IEEE

thereby minimizing software rewrite. However

multi-processes have multi-output. An arbiter is

designed to make a final decision for its given

multiple input behaviors. There are several

different types of arbiters, such as Boolean

arbiter, (fuzzy) weighted average arbiter and
fuzzy constrains. The difference between fuzzy

constrain type arbiter and others is its input and

output are fuzzy sets instead of simple values.
The final result will be defuzzified.

Usually an arbiter take the confidence,

importance and variable value as inputs and

generate an output with its confidence and

importance. Confidence represents a degree of

accuracy of input data and importance initially is

a user-defined value.

In order to make behaviors well organized,

manager is used to manager related behaviors
and arbiters and is used to schedule the start

time, priority of processes and decide the final

output by using arbiters. There are three different

types of managers: synchronous, asynchronous

and event manager. The event manager is used

for handle condition-based execution. The

advantage for using manager is that it can be

dynamically reconfigured

For example in Figure4, manager manages

two controllers and one arbiter. Two controllers

are depth and altitude controllers. An arbiter is

used to combine the commanded pitch from both
controllers and open loop pitch then generates

final pitch angle.

Mission Plan

Mission plan is a plain text file with English

style language. Below is a typical mission file:

//set initial point

Set Origin 26 22.22N806.27 W

//start state manager with priority 70

Start Mgr StateA4gr 70

Start A4gr HeadingMgr 80

//disable the su~ace safety feature

Need NoSu@aceSafety

Start Motor

clear criteria

set criteria plane –5

set speed 1.5

set depth 8.0

goto xy O –1800

set depth O

goto Xy 200-2200
//end mission

clear criteria

set rpmo

set torqueo

set direction

Go

Stop motor

Stop mission

For a typical mission listed above, AW was
tirst commanded go south 1800m with speed

1.5mlsec and depth 8.Om, then come to surface

for GPS fix and go south 400m. The required

manager is state manager and heading manager

which run at priority 70 and 80. “Set criteria” is

used to set the criteria of the completion of a set

point or way point command . “Go” means to

start the mission.

Simulation software shares the same mission

plan file as vehicle. So mission status can be

easily relayed to simulation platform.

Monitor and Data Logger

Monitor is an independent process with

Motif GUI used to monitor and change the values

of shared memory variables. Monitor can also be

used to show the real vehicle motion dynamically

via client server communication. One advantage

of monitor is you can change the shared memory
variables at any time. So it can be used for

“hardware in loop” simulation.

An editable monitor parameter file is

generated by filter program when you generated

the source code for shared memory. Users can

select their desired monitor variables.

Data logger is used to record the variable

values along with the updating time for further

use. Variables can be logged at a user given

sampling frequency or be logged if it is changed.

A parameter text file for logger is also supplied

for user connivance. Logger data can be rewritten

to shared memory for mission replay on

graphical platform. Extracting data from logger

file is achieved by a supplied program. Data

analysis package written in MatLab is also

available.

Controller

TSK type fuzzy controllers were widely

used to control vehicle motion such as heading,
pitching and depth because of their robustness.

For an example, the pitch controller takes in

pitch and pitch rate as inputs and produces a

desired stern plane angle which was then fed to
the vehicle. The detailed description of the fuzzy

controller can be found in [An]. Fuzzy sliding

0-7803-4111-2/97 $10.00 (c) 1997 IEEE

mode controller is currently under being

developed andtested (Figure 5).

As parameters of controllers are stored in

shared memory, the performance of controller

can bedynatically changed. With the help of

simulation platform users can easily tune the

parameters of controller.

3D Graphics

3D graphics is used to help user visualize

AW motion. OpenGL, Open Inventor,

Performer are three most widely used developing

tools. OpenGLis industry standard and platform

independent. It provides C, FORTRAN, Ada

API. But it is a low-level graphics programming

tools. It is hard to develop complex graphic

application. Performer is easy to use and

provides C, C++ API. But it is platform

dependent. Open Inventor is object-oriented built

on top of OpenGL. It comes with a rich set of

built-in objects and animation tools. Standard

text file format, which is supplied by Open

Inventor, is easily used to generate complex

objects (such as OEX). Objects are easily added

or modified without code modification.

Future Work

Up to now simulation package has already

been used for tuning controller. “Hardware in

loop” simulation will be tested in recently. In the

coming year, we will improve this simulation

software. We will characterize sensors such as

GPWLBL and setup sensors model that will be

incorporated into the package. Environment

factor will be taken into consider too. Basic

currents and waves model will be studied and

coded to simulate the environment. More delicate

wave and current models will be included with

the help of MURI partners. Environment

database will also be created. CTD survey data

will be incorporated. Feedback adaptive

sampling controller development will be

implemented based on the database. Obstacles

avoidance algorithm will also be implemented.

References

Humphreys D. E.(1996) “Vehicle Hydrodynamic

& Maneuvering Model for the FAU Ocean

Explorer Vehicle (OEX)” V.C.T Technical

Memorandum 96-05

Ganesan K et al (1996) “A progmatic software

architecture for UUVS” IEEE Symposium on

Autonomous Underwater Vehicle Technology.

An, P. E. et al (1996). “ A Quantitative Measure

of Sea-State Effect on Small Autonomous

Underwater Vehicle Motion in Shallow Water” ,

Oecanology International 96, Brighton, UK,

pp.21 1-233.

Fossen, T. I. (1994). Guidance and Control of

Ocean Vehicles, John Wiley Publishing.

Smith ,S. M. et al “The Ocean Explorer AUV: A

Modular Pla#orm For Coastal Oceanography” ,

UUST, Durham, New Hampshire, September.

Figure 1 3D AUV model

0-7803-4111-2/97 $10.00 (c) 1997 IEEE

w $q mpmn (d+-. Q.9MO

-1 -

-2 -

-3 -

-4
t?u 130 I to 150 la 170 180

htwcl

-Om I , , , , , I
120 130 t40 150 16! 170 180

W@

Figure 2 Step response of AUV model

[

mulamdatiehn

ShmEdmmuy

“ &@=@=if

● qydmd

d
mmxytokcrd

: $8

d

#cll @t&

@Me AlvMlial)wRlte ~

@lRate @lRate

miteawuialieto
dlmxlmllmy

“ S*

lad Imlmy ● cqYyloalnrmry &FJ’jm

todEldnEnLxy

Figure 3 Sketch of shared memory

Cmd

En

Fuzzy Depth

Depth confidence

Auv Controller

Depth
FDC Pitch

itch Pitch

confidence I I

Figure 3 Sketch of manager

-051 , , 1 b , 1

0 2 4 6 8 10 !2 14

0s, 1 [1 I I I I

Figure 5 Time history of fuzzy sliding mode pitch controller

0-7803-4111-2/97 $10.00 (c) 1997 IEEE

